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Design of CT and CQ Filters Using Approximation
and Optimization

Ralph Levy, Life Fellow, IEEE,and Peter Petre, Member, IEEE

Abstract—A new design technique for cascaded triplet (CT) fil-
ters has been derived commencing from the well-known Cheby-
shev all-pole prototype filter. One or more finite frequency poles
may be introduced by cross coupling across sets of three nodes, and
the filter rematched by a reasonably accurate approximate com-
pensation of the element values. Any general optimizer may then
be used to obtain a nearly perfect result without undue concern
over convergence failures. A previous similar theory for cascaded
quadruplet sections is generalized and may be combined with the
CT theory to form filters having both types of sections. The theory
is applied to both singly and doubly terminated filters and may in-
clude poles on the real axis of the s-plane for delay equalization.

Index Terms—Cascaded trisection filters, cascaded quadruplet
filters, cross-coupled filters, filter synthesis and optimization,
singly and doubly terminated filters.

I. INTRODUCTION

T HIS PAPER focuses on the design of filters having cas-
caded triplet (CT) or cascaded quadruplet (CQ) sections

that are relatively simple to tune compared with filters having
“nested” cross couplings. The latter may have more optimal
characteristics but are typically much more difficult to align and
tune. Exact design theories using classical synthesis are avail-
able [1]–[3], but recently there has been interest in design tech-
niques based on optimization [4], [5]. If optimization is to be
used, it is preferable to commence from a design that is as close
as possible to the final result (i.e., an approximate theory is de-
sirable). This design is available for filters having CQ sections
[6] but not for CT sections. It is perhaps surprising that the exact
design theory for CT sections has preceded the approximate one
given in this paper.

The selection of filter degree with transmission zero locations
has been the subject of many previous papers, e.g., [1]–[5]. As
a general rule, a simple Chebyshev filter would be designed ini-
tially, and, if it fails to meet specifications, one or more poles are
shifted from dc and/or infinity to improve the response. Also, in
most cases, the overall degree will be reduced compared with
the initial Chebyshev design since a pseudo-elliptic filter with
poles of attenuation is much more efficient. Frequently specifi-
cations may be met by more than one set of design parameters.
The attenuation poles in the final prototype design are realized
using cross coupling in the form of CT and/or CQ sections as
described in this work and in previous papers.
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Fig. 1. Doubly terminated low-pass prototype filter.

Although in many cases it is possible to optimize a design
starting from the correct topology but with arbitrarily assigned
element values, such methods may not always converge, espe-
cially for high-degree filters. Thus, the objective function given
in [4] does not apply to CQ sections producing real axis trans-
mission zeros used in linear-phase filters. Usually it is prefer-
able to commence from a close approximate design that is al-
most certainly guaranteed to converge using any standard opti-
mizer. In addition, the existence of an approximate design may
be considered to be of academic interest and to have practical
engineering value. The question of why optimization should be
used when exact synthesis theory exists is also pertinent, but
synthesis may not always be simple or readily available, and
many engineers would prefer more commonly used procedures.
The present combination of a relatively good approximation fol-
lowed by rapid optimization is simpler and may be considered
more general as far as ease of application is concerned, com-
pared with exact synthesis for complex situations (e.g., multi-
plexers where the input match almost always requires additional
optimization beyond the result obtained from exact synthesis).

II. THEORY OFCASCADED CT SECTIONS

The theory commences from the standard all-pole low-pass
prototype filter shown in Fig. 1, which will normally have a
Chebyshev equi-ripple response, but could also be Butterworth
or correspond to other specialized responses. This filter is con-
verted into a bandpass filter with band edgesand , and
normalized mid-band frequency

(1)

The admittance inverters may be realized as standard Pi sec-
tions of capacitors or inductors [7], as shown in Fig. 2(a) for ca-
pacitive (pole at dc) and Fig. 2(b) for inductive (pole at infinity)
inverters, but there is a third realization shown in Fig. 2(c),
which is to use a Pi of parallelLC sections [8], [9]. This in-
troduces a pole at

(2)

and is the basis of the theory.
It is well known that in standard - or -type Pi sections the

negative shunt circuit elements are absorbed into the adjacent

0018–9480/01$10.00 © 2001 IEEE



LEVY AND PETRE: DESIGN OF CT AND CQ FILTERS USING APPROXIMATION AND OPTIMIZATION 2351

(a) (b)

(c)

Fig. 2. (a) Capacitive (J = ! C). (b) Inductive (J = 1=! L).
(c) Pole-producing admittance inverters (J = ! C � 1=! L.)

main positive shunt elements. The same absorption procedure
is used for the finite frequency pole-producing sections.

The LC product is given by the resonant condition (2), and
the value of and is determined by the required value of
the admittance inverter at mid-band. Assuming admittances
normalized to 1 , the susceptance of the inverter of Fig. 2(c) is

(3)

where is the mid-band or synchronous frequency of the filter.
The values of and are then obtained from (2) and (3). Note
that is positive if the pole lies above the passband and negative
if below. In either case, we obtain the result

(4)

and

(5)

giving positive values of and .
The case where the pole is on the real axis at , giving

delay equalization, is also of interest. Here, the values ofand
may be derived by carrying out the substitution

(6)

in (4) and (5), leading to

(7)

and

(8)

is positive for such sections, so that is negative and
positive, a result which has been described previously (e.g., in
[2, Fig. 8]). This particular type of real axis pole may be pro-
duced only by a CQ, not by a CT section.

Following formation of all of the admittance inverters, the re-
sultingLC circuits with real frequency poles may then be con-
verted into ones having CT sections using the formulas given
in [3]. Since apparently this reference is not readily available to
many readers, the formulas are reproduced in the Appendix for
completeness. The overall procedure guarantees that the pole is
produced at the correct frequency, and that the return loss is cor-
rect at mid-band.

Fig. 3. Formation of a bandpass CQ section.

III. T HEORY OFGENERAL CQ SECTIONS

The original theory given in [6] is presented for symmetrical
sections of a low-pass prototype filter. Here, we require forma-
tion of cross-coupled asymmetric bandpass CQ sections.

Commencing from a four-node portion of a bandpass filter
derived from a standard low-pass prototype as shown in Fig. 3,
we need to introduce a cross coupling across nodes 1 and 4 to
introduce poles at real frequencies or on the real axis of the
complex frequency plane. The admittance to ground at node
is

(9)

where the fractional bandwidth is

(10)

The admittance matrix of the network, neglecting the shunt
susceptances at nodes 1 and 4, which do not enter into the final
equations, is

(11)

where , the value obtained from the prototype Chebyshev
low-pass filter, has been amended to, since its value will be
changed in the cross-coupled section. The matrix of (11) gives
the following set of equations:

(12)

The next step is to form the 2 2 matrix of the section be-
tween nodes 1 and 4 (i.e., that relating currentsand to volt-
ages and with since there are no impressed
current sources at nodes 2 and 3).

The second and third equations in (12) become

(13)
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Writing (13) in matrix form and inverting gives

(14)

where

(15)

We can now substitute for and in the first and fourth
equations of (12) to give the required two-port admittance ma-
trix as

(16)

where

(17)

The condition for the occurrence of attenuation poles is there
shall be no transmission between nodes 1 and 4 (i.e., ),
which, from (17) and (15), gives

(18)

This is seen to be a generalization of [6, eq. (15)], where we
recover the latter if we have , , and

. Using (9), we see that attenuation poles occur
when

(19)

Equation (19) gives poles denoted by and on each side
of the passband, where

(20)

Thus we may select one of these poles, and the other is forced
to occur in accordance with (20).

In order to complete the necessary set of equations, the con-
dition for a match at mid-band is obtained similarly to that de-
scribed in [6] (i.e., by forming the admittance matrix 1–4 with

and equating the perturbed and unperturbedterms
at mid-band). Thus, using (15) with , giving

, we find from (17)

or

(21)

This is seen to be identical to [6, eq. (17)] if ,
, , and .

Hence, given a pole frequency , which determines
from (20), we may solve for the unknowns and from
(19) and (21).

Fig. 4. N = 6 filter with two coincident poles. These may be converted
into CT sections using matrix operations which removes capacitor 2–3 and
introduces one across 1–3, with a similar operation to remove 4–5 and introduce
4–6.

In the case of real axis zeros located at , (19) becomes

(22)

The theory will now be illustrated by several examples.

IV. EXAMPLES

A. Example 1—Doubly Terminated CT Filters

Here, we illustrate the design of six-section filters having
two coincident poles. The lumped-element circuit is shown in
Fig. 4 and was derived from the prototype of Fig. 1 using three
inductive and two pole-producing pi inverters. This topology is
appropriate for eventual conversion into a combline filter using
Richards’ transformation and well-known close approximation
techniques. The ripple level is 20-dB return loss, and the
return-loss bandwidth is 5%. Frequencies are normalized to
mid-band with band edges at 0.975 and 1.025. The two exam-
ples are for poles located at 0.90 and 0.95, respectively, and
the comparisons between the exact and approximate theories
are given in Table I(a) and (b). The maximum errors for the
element values are approximately 2% for the pole at 0.90 and
7.7% for that at 0.95. Such relatively small error is the reason
for the suitability of the method for optimization.

Analysis of the case with the pole at 0.9 showed a return loss
of better than 11 dB, and the bandwidth shifted slightly higher in
frequency. The analysis for the more severe case with the pole
at 0.95, which is much closer to the passband edge, is shown
in Fig. 5. Here, the return loss has degraded to a worst level
of 6.5 dB and the frequency shift has increased. However, the
return-loss poles appear to be present and the form of the char-
acteristics suitable for optimization. In practice, in both cases,
the filters optimized within a few seconds using a standard gra-
dient-based optimizer, here “Touchstone.” Since the approxima-
tion is so close to the exact result, the details of the optimization
are unimportant, and almost any optimization technique should
be successful. In our case, 100 frequencies were used, spread
across the passbands and stopbands, and simple constraints on
the passband return loss and stopband rejection were applied.

The optimized result for the pole at 0.95 is shown in Fig. 6.
The six return-loss poles are well resolved, and the 20-dB re-
turn-loss level is produced quite closely. The result was obtained
by retaining the element values of the pole-producing sections,
which appears to be possible in all cases so far investigated. This
fact, combined with the nonunique nature of the bandpass filter
(it has an infinite number of equivalent circuits), means that the
final set of element values differ slightly from those of the exact
synthesis.
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TABLE I
COMPARISONBETWEEN EXACT AND APPROXIMATE ELEMENT VALUES FOR

SIX-SECTION FILTERS HAVING POLE PAIRS AT COINCIDENT FREQUENCIES.
(a) POLES AT 0.90. (b) POLES AT 0.95. (SEE FIG. 3 FORCIRCUIT TOPOLOGY)

(a)

(b)

Fig. 5. Results for the approximate design.

B. Example 2—Singly Terminated CT-Filters

1) Low-Pass Prototype Element Values:Singly terminated
filters are used in the design of contiguous multiplexers, and an
example is included here to illustrate this general case, which
requires a different type of optimization condition than normal
matched doubly terminated filters. A second objective is to

Fig. 6. Design of Fig. 4 after optimization.

Fig. 7. Singly terminated low-pass prototype filter.

present suitable formulas for the Chebyshev low-pass proto-
type, which are not always correct in the available literature.

The circuit of the prototype with admittance inverters,
all-shunt elements, and unity terminating conductance for both
even and odd values of filter degreeis given in Fig. 7. The
insertion loss function for the Chebyshev case is

(23)

and almost correct formulas and tables for thevalues are given
in [10, pp. 107–109]. The formulas are correct forodd and
for even, apart from an ideal transformer missing from the
infinite-impedance end for even. The values are given by

(24)

(25)

(26)

and

(27)

where

(28)

In the case of even, we define

(29)

where is the ripple level expressed as a voltage standing-wave
ratio (VSWR), i.e.,

(30)
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(a)

(b)

Fig. 8. Modified singly terminated low-pass prototypes of even order: (a)n =

2 and (b)n = 4.

TABLE II
SINGLY TERMINATED LOW-PASS PROTOTYPEFILTERS, 0.5-dB RIPPLE,

M = 1:059254. SEE FIG. 8 FOR TOPOLOGY

It is convenient to replace the ideal transformer by a central
admittance inverter of value given by

even, odd (31a)

even, even (31b)

In this case, it is necessary to modify thevalues for
, , , , as indicated in Fig. 8, showing modified

values for and . Tabulated values for 0.5-dB ripple
prototypes for even are shown in Table II.

2) Singly Terminated CT Filter, : The example is
a five-section singly terminated filter designed for normalized
passband edges of 0.975 to 1.025, and a pair of coincident poles
at 0.850. The ripple level is 0.512 dB, and, using (23)-(28),
the values are 0.858624, 1.430563, 1.818968, 1.641949, and
1.541968 (infinite impedance end). Equations (4) and (5) are
used to introduce the poles at 0.850, resulting in the circuit of
Fig. 9. When used in multiplexers, such filters are connected
at the infinite impedance end, and it is logical then to reverse
the nodal nomenclature, as in Table III, which shows a com-
parison between the exact and approximate values of the circuit
elements. The normalized real part of the input impedance of
a singly terminated filter of this type should be equi-ripple and
less than unity, in the present case varying between 0.8889, and
1. Fig. 10 shows the real and imaginary parts of this impedance
for the approximate theory. Optimization is then applied, with

Fig. 9. N = 5 singly terminated filter prior to conversion into CT format.

TABLE III
COMPARISON BETWEEN EXACT AND APPROXIMATE ELEMENT

VALUES FORFILTER OF FIG. 9

Fig. 10. Real and imaginary parts ofZ for N = 5 singly terminated filter
with poles at 0.85: approximate theory, before optimization.

Fig. 11. Real and imaginary parts ofZ for N = 5 singly terminated filter
with poles at 0.85: after optimization.

the objective function forcing the real part to lie between the as-
signed limits of 0.8889 and 1, and the result obtained is shown
in Fig. 11. The optimization time is substantially instantaneous.
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Fig. 12. Approximate and optimized results for ann = 7 CQ/CT filter.

(a)

(b)

Fig. 13. (a) Pole-producing inverter introduced replacing in the bandpass
prototype. (b) Series capacitator eliminated by introducing cross coupling
between resonator 1 and 3.

C. Example 3— CQ/CT Filter

The entire theory may be expressed in terms of the coupling
matrix, the elements of which are related to the element values
of the filter by the well-known relationship

(32)

We propose to defer further details for a later paper. This par-
ticular method was applied to the design of an filter con-
sisting of a CQ section between nodes 1 and 4, producing a pair
of finite frequency poles, and a CT section between nodes 5 and
7, giving an extra high side pole. In this example, the approxi-
mate theory gives remarkably good results, as seen in Fig. 12,
which also gives the optimized result.

V. CONCLUSION

A new theory for the design of CT filters based on deriva-
tion of specific design equations and the element values of the

standard Chebyshev all-pole low-pass filter has been described.
If the finite attenuation poles are relatively far from the pass-
band, then the theory may be quite accurate, but optimization
is usually required, and convergence is practically guaranteed
since the starting condition is sufficiently close to the final ideal
result. The new results complement an earlier one obtained for
CQ filters [6], and both CT and CQ sections may be incorpo-
rated within a filter design.

APPENDIX

FORMULAS FORCONVERSION OF ACASCADED POLE SECTION

TO A CT SECTION [3]

The admittance matrix of the circuit shown in Fig. 13(a) is

(33)

where

(34)

(35)

and is the complex frequency variable.
Row 2 and column 2 of (33) are multiplied by a factorand

added to row 3 and column 3, respectively, giving a new 33
admittance matrix

(36)

which has a two-port transfer function equivalent to that of the
original circuit. A cross-coupling inverter has been intro-
duced in (36). The capacitor from the admittance in the matrix
elements 2–3 and 3–2 is now eliminated to leave a simple series
inductor as shown in Fig. 13(b), giving

(37)

and the remaining inductance across nodes 2 and 3 is, given
by

(38)

The remaining circuit elements of the CT section may be
written down from matrix (36) in conjunction with (37).

REFERENCES

[1] R. J. Cameron and J. D. Rhodes, “Asymmetric realizations for
dual-mode bandpass filters,”IEEE Trans. Microwave Theory Tech.,
vol. MTT-29, pp. 51–58, Jan. 1981.

[2] R. Levy, “Direct synthesis of cascaded quadruplet (CQ) filters,”IEEE
Trans. Microwave Theory Tech., vol. 43, pp. 2940–2945, Dec. 1995.



2356 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 12, DECEMBER 2001

[3] R. Hershtig, R. Levy, and K. A. Zaki, “Synthesis and design of cas-
caded trisection (CT) dielectric resonator filters,” inEur. Microwave
Conf. Dig., Jerusalem, Israel, 1997, pp. 784–791.

[4] W. A. Atia, K. A. Zaki, and A. E. Atia, “Synthesis of general topology
multiple coupled resonator filters by optimization,” inIEEE MTT-S Int.
Microwave Symp. Dig., June 1998, pp. 821–824.

[5] S. Amari, “Synthesis of cross-coupled resonator filters using an ana-
lytical gradient-based optimization technique,”IEEE Trans. Microwave
Theory Tech., vol. 48, pp. 1559–1564, Sept. 2000.

[6] R. Levy, “Filters with single transmission zeros at real and imaginary
frequencies,”IEEE Trans. Microwave Theory Tech., vol. MTT-24, pp.
172–182, Apr. 1976.

[7] S. B. Cohn, “Direct-coupled resonator filters,”Proc. IRE, vol. 45, pp.
187–196, Feb. 1957.

[8] R. Levy, “Mixed lumped and distributed linear-phase filters,” inEur. Mi-
crowave Circuit Theory Design Conf., London, U.K., July 1974, Conf.
Pub. 116, pp. 32–37.

[9] R. Levy and K. J. Andersen, “An optimal low loss HF diplexer using
helical resonators,” inIEEE MTT-S Int. Microwave Symp. Dig., June
1992, pp. 1187–1190.

[10] G. L. Matthaei, L. Young, and E. M. T. Jones,Microwave Filters,
Impedance-Matching Networks, and Coupling Structures. New York:
McGraw-Hill, 1964.

Ralph Levy (SM’64–F’73–LF’99) received the B.A.
and M.A. degrees in physics from Cambridge Uni-
versity, Cambridge, U.K., in 1953 and 1957, respec-
tively, and the Ph.D. degree in applied sciences from
London University, London, U.K., in 1966.

From 1953 to 1959, he was with GEC, Stanmore,
U.K., where he was involved with microwave
components and systems. In 1959, he joined Mullard
Research Laboratories, Redhill, U.K., where he
developed a widely used technique for accurate
instantaneous frequency measurement using several

microwave discriminators in parallel known as digital IFM. This electronic
countermeasures work included the development of decade bandwidth
directional couplers and broad-band matching theory. From 1964 to 1967, he
was a member of the faculty of The University of Leeds, Leeds, U.K., where
he carried out research in microwave network synthesis, including distributed
elliptic function filters and exact synthesis for branch-guide and multiaperture
directional couplers. In 1967, he joined Microwave Development Laboratories,
Natick, MA, as Vice President of Research. He developed practical techniques
for the design of broad-band mixed lumped and distributed circuits, such as
tapered corrugated waveguide harmonic rejection filters, and the synthesis of
a variety of microwave passive components. This included the development of
multioctave multiplexers in suspended substrate stripline, requiring accurate
modeling of inhomogeneous stripline circuits and discontinuities. From 1984
to 1988, he was with KW Microwave, San Diego, CA, where he was mainly
involved with design implementations and improvements in filter-based
products. From August 1988 to July 1989, he was with Remec Inc., San
Diego, CA, where he continued with advances in suspended substrate stripline
components, synthesis of filters with arbitrary finite frequency poles, and
microstrip filters. In July 1989, he became an independent consultant and has
worked with many companies on a wide variety of projects, mainly in the field
of passive components, especially filters and multiplexers. He has authored
approximately 70 papers and two books, and holds 12 patents.

Dr. Levy has been involved in many IEEE Microwave Theory and Tech-
niques Society (IEEE MTT-S) activities, including past editor of the IEEE
TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES (1986–1988).
He was chairman of the Central New England and San Diego IEEE MTT-S
Chapters, and was vice-chairman of the Steering Committee for the 1994 IEEE
MTT-S International Microwave Symposium (IMS). He was the recipient of
the 1997 IEEE MTT-S Career Award.

Peter Petre (S’90–M’92) received the M.S. and
Ph.D. degrees in electrical engineering from the
Technical University of Budapest, Budapest,
Hungary, in 1985 and 1991, respectively.

He is currently a Senior Research Scientist in
the Microwave Technology Department, Micro-
electronics Laboratory, HRL Laboratories, Malibu,
CA. From 1990 to 1992, he was a Visiting Research
Associate at Syracuse University, Syracuse, NY.
From 1992 to 1996, he was the Electromagnetic
Group Manager at Compact Software Inc. (now the

Ansoft Corporation), where he was engaged in the development and man-
agement of Compact’s commercially available three-dimensional full-wave
electromagnetic simulator “Microwave Explorer.” Since 1996, he has been
with HRL Laboratories, where he has pioneered the microelectromechanical
system (MEMS) tunable miniature filters and devices, as well as the fast
numerical method in circuit simulation research. He also has extensive
experience in the area of advanced microwave and millimeter-wave circuit
and system development, such as filters, interconnects, MEMS devices,
monolithic-microwave integrated-circuit (MMIC) antennas, and packaging. He
has authored or co–authored over 50 journal and conference publications.


	MTT023
	Return to Contents


